MIT Research Reactor

Edward S. Lau Assistant Director of Reactor Operations MIT Nuclear Reactor Laboratory

Replacement of Emergency Batteries for the MIT Research Reactor

20 October 2021

Discussion Topics

- 60 lead-acid (Pb-acid) batteries that provided emergency backup power were reaching their end of life
- New type of battery cell: Valve-Regulated Lead-Acid (VRLA) Absorbent Glass Mat (AGM)
- License Amendment Request (LAR)
- Implementation

Previous Pb-Acid Battery Bank

Previous Pb-Acid Battery Bank

- Each of the 60 cells contained Pb plates flooded with 30% sulfuric acid
- Each cell produced 2 Volts DC & was capable of outputting 298 amps for one hour, ending at 1.75 Vpc per cell
- For an eight-hour duration discharge, each cell was capable of 72 amps output (so ~576 A-h), ending at 1.75 Vpc per cell
- Design life was 20 years
- Routinely required specific gravity measurements using a hydrometer. Other routinely monitored parameters included bank voltage and pilot cell voltage.
- Battery discharge test performed once every two years

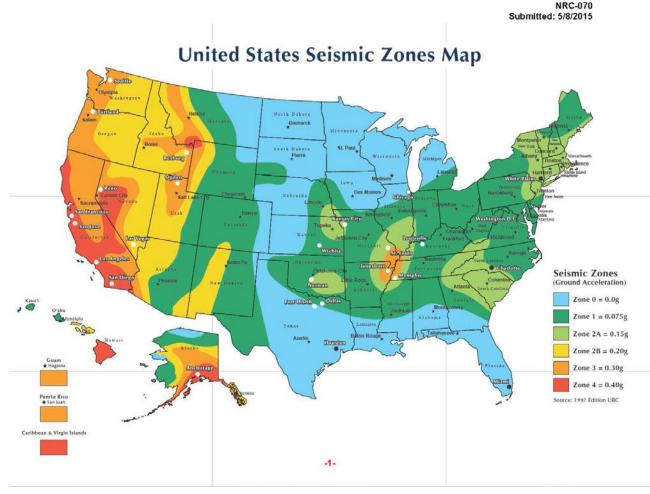
New VRLA AGM Batteries (half bank)

TRTR October 2021

New VRLA AGM Batteries

- Each of the 60 cells contains Pb plates sandwiched between glass mats that have absorbed sulfuric acid
- Each cell is sealed; specific gravity measurement is not required (and not possible)
- Each cell produces 2 Volts DC, and is capable of outputting 454 amps for one hour, ending at 1.75 Vpc per cell
- For eight-hour duration discharge, each cell is capable of 105 amps output (so 840 A-h), ending at 1.75 Vpc per cell
- Design life is 20 years
- Routinely requires voltage, negative terminal temperature, and cell connector resistance measurements
- Battery discharge test performed once every two years TRTR October 2021

NRC Interaction


- The MIT Reactor Safeguards Committee reviewed and approved a draft LAR on 29 January 2021
- Several videoconferences between Dec. 2020 and early March 2021, including a Phase 0 public meeting with the NRC technical review team on 5 Feb. 2021
- LAR formally submitted on 2 March 2021
- NRC Request for Additional Information (RAI) on 18 March
- MIT Response to the RAI submitted on 24 March
- After several rounds of telephone & email correspondence, MIT Response to RAI supplemented by MIT on 17 May
- NRC sent LAR Approval on 31 August 2021, with 180 days for implementation

TRTR October 2021

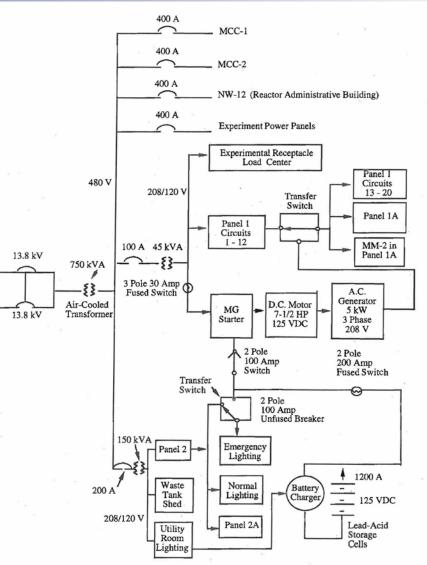
Reliability

- Expected service life and its technical basis
 - Following manufacturer's recommendations on maintenance
 - Following IEEE Standard 1188 recommendations
- The batteries will operate in an area which is ventilated and at a controlled room temperature
- Longest off-site electrical power loss in the past 20 years (in 2003) lasted ~3 hours
- Similar batteries in application at MIT Co-Generation Plant since 2016 with no failures
- Replacement criteria

Seismic Qualification

Sizing – Batteries & Charger

- Manufacturer sizing methodology adheres to IEEE 485 & 1184
- Demonstrate all expected loads on the batteries, including both momentary and continuous (duty cycle diagram)
- The batteries must operate a set of equipment listed in an MITR Technical Specification for a minimum of one hour


Ventilation

- For temperature (77° F, 25° C) and hydrogen control per IEEE 1187
- Ceiling exhaust fan continuous operation
- Room doors fitted with large vents to promote circulation
- Battery bank occupies less than 1% of the room's volume

Electrical Protection of the Batteries

- Battery protection adheres to IEEE 1187
- Battery bank connects to emergency power system through a 200-amp disconnect switch, a 100-amp switch at the motor-generator set, and a 100-amp circuit breaker for the DC emergency lighting
- Short circuit evaluation maximum current of 6038 amps
- A state-of-the-art battery charger controls charging current
 - Float current monitoring
 - Temperature-compensated charging minimizes chance of thermal runaway
 - Ground fault detection
 - AC input circuit breaker trips at 18.75 amps; DC output protection trips at 50 amps
- State-of-the-art battery monitoring unit provides instantaneous indication of vital battery parameters such as cell voltages, internal resistance, and negative terminal temperatures

Electrical Power Distribution Diagram

12

Surveillance, Maintenance, Testing

- Follow manufacturer's operating manual
- For areas that the manufacturer's manual does not address, follow IEEE 1188
- Distinction between types of test
 - Performance Test checks battery capacity
 - Service Test checks capability of emergency power distribution system
 - Modified Performance Test combination of both (MITR Emergency Battery Discharge Test falls into this category, per IEEE 1188)
- Periodic surveillance beyond what manufacture directs, including more frequent visual inspection and review of battery monitoring data
- Hydrogen measurements are not needed for MITR's application

Removal of Previous Batteries

Packaging the Removed Batteries onto Pallets for Transport

TRTR October 2021

Transport of Removed Batteries to Truck for Recycling / Disposal

Installation of New Battery Systems

In progress!

Questions& Answers

TRTR October 2021